#include #include #include #include #include #include #include "print.h" #include "audio.h" #include "keymap_common.h" #include "eeconfig.h" #define PI 3.14159265 #define CPU_PRESCALER 8 // #define PWM_AUDIO #ifdef PWM_AUDIO #include "wave.h" #define SAMPLE_DIVIDER 39 #define SAMPLE_RATE (2000000.0/SAMPLE_DIVIDER/2048) // Resistor value of 1/ (2 * PI * 10nF * (2000000 hertz / SAMPLE_DIVIDER / 10)) for 10nF cap #endif void delay_us(int count) { while(count--) { _delay_us(1); } } int voices = 0; int voice_place = 0; double frequency = 0; int volume = 0; long position = 0; int duty_place = 1; int duty_counter = 0; double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0}; int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; bool sliding = false; int max = 0xFF; float sum = 0; int value = 128; float place = 0; float places[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint16_t place_int = 0; bool repeat = true; uint8_t * sample; uint16_t sample_length = 0; bool notes = false; bool note = false; float note_frequency = 0; float note_length = 0; float note_tempo = TEMPO_DEFAULT; float note_timbre = TIMBRE_DEFAULT; uint16_t note_position = 0; float (* notes_pointer)[][2]; uint8_t notes_count; bool notes_repeat; float notes_rest; bool note_resting = false; uint8_t current_note = 0; uint8_t rest_counter = 0; audio_config_t audio_config; void audio_toggle(void) { audio_config.enable ^= 1; eeconfig_write_audio(audio_config.raw); } void audio_on(void) { audio_config.enable = 1; eeconfig_write_audio(audio_config.raw); } void audio_off(void) { audio_config.enable = 0; eeconfig_write_audio(audio_config.raw); } void stop_all_notes() { voices = 0; #ifdef PWM_AUDIO TIMSK3 &= ~_BV(OCIE3A); #else TIMSK3 &= ~_BV(OCIE3A); TCCR3A &= ~_BV(COM3A1); #endif notes = false; note = false; frequency = 0; volume = 0; for (int i = 0; i < 8; i++) { frequencies[i] = 0; volumes[i] = 0; } } void stop_note(double freq) { if (note) { #ifdef PWM_AUDIO freq = freq / SAMPLE_RATE; #endif for (int i = 7; i >= 0; i--) { if (frequencies[i] == freq) { frequencies[i] = 0; volumes[i] = 0; for (int j = i; (j < 7); j++) { frequencies[j] = frequencies[j+1]; frequencies[j+1] = 0; volumes[j] = volumes[j+1]; volumes[j+1] = 0; } } } voices--; if (voices < 0) voices = 0; if (voices == 0) { #ifdef PWM_AUDIO TIMSK3 &= ~_BV(OCIE3A); #else TIMSK3 &= ~_BV(OCIE3A); TCCR3A &= ~_BV(COM3A1); #endif frequency = 0; volume = 0; note = false; } else { double freq = frequencies[voices - 1]; int vol = volumes[voices - 1]; double starting_f = frequency; if (frequency < freq) { sliding = true; for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 2000.0)) { frequency = f; } sliding = false; } else if (frequency > freq) { sliding = true; for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 2000.0)) { frequency = f; } sliding = false; } frequency = freq; volume = vol; } } } void init_notes() { /* check signature */ if (!eeconfig_is_enabled()) { eeconfig_init(); } audio_config.raw = eeconfig_read_audio(); #ifdef PWM_AUDIO PLLFRQ = _BV(PDIV2); PLLCSR = _BV(PLLE); while(!(PLLCSR & _BV(PLOCK))); PLLFRQ |= _BV(PLLTM0); /* PCK 48MHz */ /* Init a fast PWM on Timer4 */ TCCR4A = _BV(COM4A0) | _BV(PWM4A); /* Clear OC4A on Compare Match */ TCCR4B = _BV(CS40); /* No prescaling => f = PCK/256 = 187500Hz */ OCR4A = 0; /* Enable the OC4A output */ DDRC |= _BV(PORTC6); TIMSK3 &= ~_BV(OCIE3A); // Turn off 3A interputs TCCR3A = 0x0; // Options not needed TCCR3B = _BV(CS31) | _BV(CS30) | _BV(WGM32); // 64th prescaling and CTC OCR3A = SAMPLE_DIVIDER - 1; // Correct count/compare, related to sample playback #else DDRC |= _BV(PORTC6); TIMSK3 &= ~_BV(OCIE3A); // Turn off 3A interputs TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30); TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30); #endif } ISR(TIMER3_COMPA_vect) { if (note) { #ifdef PWM_AUDIO if (voices == 1) { // SINE OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 2; // SQUARE // if (((int)place) >= 1024){ // OCR4A = 0xFF >> 2; // } else { // OCR4A = 0x00; // } // SAWTOOTH // OCR4A = (int)place / 4; // TRIANGLE // if (((int)place) >= 1024) { // OCR4A = (int)place / 2; // } else { // OCR4A = 2048 - (int)place / 2; // } place += frequency; if (place >= SINE_LENGTH) place -= SINE_LENGTH; } else { int sum = 0; for (int i = 0; i < voices; i++) { // SINE sum += pgm_read_byte(&sinewave[(uint16_t)places[i]]) >> 2; // SQUARE // if (((int)places[i]) >= 1024){ // sum += 0xFF >> 2; // } else { // sum += 0x00; // } places[i] += frequencies[i]; if (places[i] >= SINE_LENGTH) places[i] -= SINE_LENGTH; } OCR4A = sum; } #else if (frequency > 0) { // ICR3 = (int)(((double)F_CPU) / frequency); // Set max to the period // OCR3A = (int)(((double)F_CPU) / frequency) >> 1; // Set compare to half the period voice_place %= voices; if (place > (frequencies[voice_place] / 50)) { voice_place = (voice_place + 1) % voices; place = 0.0; } ICR3 = (int)(((double)F_CPU) / (frequencies[voice_place] * CPU_PRESCALER)); // Set max to the period OCR3A = (int)((((double)F_CPU) /(frequencies[voice_place] * CPU_PRESCALER)) * note_timbre); // Set compare to half the period //OCR3A = (int)(((double)F_CPU) / (frequencies[voice_place] * CPU_PRESCALER)) >> 1 * duty_place; // Set compare to half the period place++; // if (duty_counter > (frequencies[voice_place] / 500)) { // duty_place = (duty_place % 3) + 1; // duty_counter = 0; // } // duty_counter++; } #endif } // SAMPLE // OCR4A = pgm_read_byte(&sample[(uint16_t)place_int]); // place_int++; // if (place_int >= sample_length) // if (repeat) // place_int -= sample_length; // else // TIMSK3 &= ~_BV(OCIE3A); if (notes) { #ifdef PWM_AUDIO OCR4A = pgm_read_byte(&sinewave[(uint16_t)place]) >> 0; place += note_frequency; if (place >= SINE_LENGTH) place -= SINE_LENGTH; #else if (note_frequency > 0) { ICR3 = (int)(((double)F_CPU) / (note_frequency * CPU_PRESCALER)); // Set max to the period OCR3A = (int)((((double)F_CPU) / (note_frequency * CPU_PRESCALER)) * note_timbre); // Set compare to half the period } else { ICR3 = 0; OCR3A = 0; } #endif note_position++; bool end_of_note = false; if (ICR3 > 0) end_of_note = (note_position >= (note_length / ICR3 * 0xFFFF)); else end_of_note = (note_position >= (note_length * 0x7FF)); if (end_of_note) { current_note++; if (current_note >= notes_count) { if (notes_repeat) { current_note = 0; } else { #ifdef PWM_AUDIO TIMSK3 &= ~_BV(OCIE3A); #else TIMSK3 &= ~_BV(OCIE3A); TCCR3A &= ~_BV(COM3A1); #endif notes = false; return; } } if (!note_resting && (notes_rest > 0)) { note_resting = true; note_frequency = 0; note_length = notes_rest; current_note--; } else { note_resting = false; #ifdef PWM_AUDIO note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE; note_length = (*notes_pointer)[current_note][1] * (note_tempo / 100); #else note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (note_tempo / 100); #endif } note_position = 0; } } if (!audio_config.enable) { notes = false; note = false; } } void play_notes(float (*np)[][2], uint8_t n_count, bool n_repeat, float n_rest) { if (audio_config.enable) { // Cancel note if a note is playing if (note) stop_all_notes(); notes_pointer = np; notes_count = n_count; notes_repeat = n_repeat; notes_rest = n_rest; place = 0; current_note = 0; #ifdef PWM_AUDIO note_frequency = (*notes_pointer)[current_note][0] / SAMPLE_RATE; note_length = (*notes_pointer)[current_note][1] * (note_tempo / 100); #else note_frequency = (*notes_pointer)[current_note][0]; note_length = ((*notes_pointer)[current_note][1] / 4) * (note_tempo / 100); #endif note_position = 0; #ifdef PWM_AUDIO TIMSK3 |= _BV(OCIE3A); #else TIMSK3 |= _BV(OCIE3A); TCCR3A |= _BV(COM3A1); #endif notes = true; } } void play_sample(uint8_t * s, uint16_t l, bool r) { if (audio_config.enable) { stop_all_notes(); place_int = 0; sample = s; sample_length = l; repeat = r; #ifdef PWM_AUDIO TIMSK3 |= _BV(OCIE3A); #else #endif } } void play_note(double freq, int vol) { if (audio_config.enable && voices < 8) { // Cancel notes if notes are playing if (notes) stop_all_notes(); #ifdef PWM_AUDIO freq = freq / SAMPLE_RATE; #endif if (freq > 0) { if (frequency != 0) { double starting_f = frequency; if (frequency < freq) { for (double f = starting_f; f <= freq; f += ((freq - starting_f) / 2000.0)) { frequency = f; } } else if (frequency > freq) { for (double f = starting_f; f >= freq; f -= ((starting_f - freq) / 2000.0)) { frequency = f; } } } frequency = freq; volume = vol; frequencies[voices] = frequency; volumes[voices] = volume; voices++; } #ifdef PWM_AUDIO TIMSK3 |= _BV(OCIE3A); #else TIMSK3 |= _BV(OCIE3A); TCCR3A |= _BV(COM3A1); #endif note = true; } } void set_timbre(float timbre) { note_timbre = timbre; } void set_tempo(float tempo) { note_tempo = tempo; } void decrease_tempo(uint8_t tempo_change) { note_tempo += (float) tempo_change; } void increase_tempo(uint8_t tempo_change) { if (note_tempo - (float) tempo_change < 10) { note_tempo = 10; } else { note_tempo -= (float) tempo_change; } } //------------------------------------------------------------------------------ // Override these functions in your keymap file to play different tunes on // startup and bootloader jump __attribute__ ((weak)) void play_startup_tone() { } __attribute__ ((weak)) void play_goodbye_tone() { } //------------------------------------------------------------------------------