jlj-qmk/users/arkag/arkag.c

574 lines
14 KiB
C
Raw Normal View History

Keymap: Arkag Userspace and MechMini2 Layout (#3958) * deleting arkag branch, forcibly moving changes over to master * fade_color function added, not tested * added half functions some stuff * surround_type function implemented and working. * added flashing function and removed fading, flashing supports infinite flashing along with controlled number flashes * added a fade state machine and functionality * build optimizations, changed fade to bounce between bounds rather than roll over, added a HALMAK layout * changes to sleep breath function, changed how I will switch to HALMAK * support for halmak added * support for activity detection added, condensed fading and flashing state machines, removed support for HALMAK and COLEMAK because arkag is stupid * changed sleep and inactive behaviors, now the color shifting reverses on state change, yay! save_color and reset_color are made to enable layer color changing to look cooler. * reformatted some if statements in state detection * changes to force fade to pause on boot, or plug in. * Attempting to move over to userspace, pushing to repository for help * userspace stuff.... * userspace stuff.... * layout changes, working userspace, Removed left side shift and replaced it with a MT() for LSFT and SPC. Userspace seems to be working properly now! HURRAY * Layout change Removed space/shift and reset modifiers to what they were originally. Added homerow modifiers. * Removed excessive tabs in files * Moved mods on homerow around... * changes recommended by @drashna
2018-09-22 15:43:28 +00:00
#include "arkag.h"
// Start: Written by konstantin: vomindoraan
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
void send_unicode_hex_string(const char *str) {
if (!str) { return; } // Saftey net
while (*str) {
// Find the next code point (token) in the string
for (; *str == ' '; str++);
size_t n = strcspn(str, " "); // Length of the current token
char code_point[n+1];
strncpy(code_point, str, n);
code_point[n] = '\0'; // Make sure it's null-terminated
// Normalize the code point: make all hex digits lowercase
for (char *p = code_point; *p; p++) {
*p = tolower(*p);
}
// Send the code point as a Unicode input string
unicode_input_start();
send_string(code_point);
unicode_input_finish();
str += n; // Move to the first ' ' (or '\0') after the current token
}
}
// End: Written by konstantin: vomindoraan
uint8_t current_os, mod_primary_mask, fade_delay;
uint16_t flash_timer_one, flash_timer_two,
fade_timer_one, fade_timer_two,
active_timer_one, active_timer_two,
elapsed = 0,
num_extra_flashes_off = 0;
Color underglow,
flash_color,
saved_color,
hsv_none = {0,0,0},
hsv_white = {0,0,127};
flashState flash_state = no_flash;
fadeState fade_state = add_fade;
activityState state = boot;
void set_color (Color new, bool update) {
rgblight_sethsv_eeprom_helper(new.h, new.s, new.v, update);
}
void save_color(Color to_save) {
saved_color = to_save;
}
void reset_color(void) {
underglow = saved_color;
}
Color mod_color(Color current_color, bool should_add, uint8_t change_amount) {
save_color(underglow);
int addlim = 359 - change_amount;
int sublim = change_amount;
int leftovers;
if (should_add) {
if (current_color.h <= addlim) {
current_color.h += change_amount;
} else {
leftovers = (359 + change_amount) % 359;
current_color.h = 0 + leftovers;
}
} else {
if (current_color.h >= sublim) {
current_color.h -= change_amount;
} else {
leftovers = change_amount - current_color.h;
current_color.h = 359 - leftovers;
}
}
return current_color;
}
void reverse_fade (void) {
if (fade_state == add_fade){
fade_state = sub_fade;
} else {
fade_state = add_fade;
}
}
void check_state (void) {
static bool activated, deactivated, slept;
switch (state) {
case active:
if (!activated) {
fade_delay = LED_FADE_DELAY;
reverse_fade();
activated = true;
deactivated = false;
}
active_timer_two = timer_read();
elapsed = active_timer_two - active_timer_one;
if (elapsed < INACTIVE_DELAY) {return;}
state = inactive;
return;
case inactive:
if (!deactivated) {
fade_delay = LED_FADE_DELAY * 2;
reverse_fade();
deactivated = true;
slept = false;
activated = false;
}
active_timer_two = timer_read();
elapsed = active_timer_two - active_timer_one;
if (elapsed < SLEEP_DELAY) {return;}
state = sleeping;
return;
case sleeping:
if (!slept) {
fade_delay = LED_FADE_DELAY * 6;
reverse_fade();
slept = true;
deactivated = false;
activated = false;
}
return;
case boot:
return;
}
}
void fade_rgb (void) {
static bool ran_once;
if (flash_state != no_flash) {return;}
if (state == boot) {return;}
switch (fade_state) {
case add_fade:
if (!ran_once) {
fade_timer_one = timer_read();
ran_once = true;
}
fade_timer_two = timer_read();
elapsed = fade_timer_two - fade_timer_one;
if (elapsed < fade_delay) {return;}
if (underglow.h == 359) {
fade_state = sub_fade;
return;
}
underglow.h = underglow.h + 1;
set_color(underglow, false);
// set_color_at(underglow, 0);
fade_timer_one = fade_timer_two;
return;
case sub_fade:
fade_timer_two = timer_read();
elapsed = fade_timer_two - fade_timer_one;
if (elapsed < fade_delay) {return;}
if (underglow.h == 0) {
fade_state = add_fade;
return;
}
underglow.h = underglow.h - 1;
set_color(underglow, false);
// set_color_at(underglow, 0);
fade_timer_one = fade_timer_two;
return;
}
}
void flash_rgb (void) {
static bool ran_once;
switch(flash_state) {
case no_flash:
return;
case flash_off:
if (!ran_once) {
set_color(hsv_none, false);
flash_timer_one = timer_read();
ran_once = true;
flash_state = flash_on;
return;
}
flash_timer_two = timer_read();
elapsed = flash_timer_two - flash_timer_one;
if (elapsed >= LED_FLASH_DELAY) {
set_color(hsv_none, false);
flash_timer_one = timer_read();
flash_state = flash_on;
}
return;
case flash_on:
flash_timer_two = timer_read();
elapsed = flash_timer_two - flash_timer_one;
if (elapsed >= LED_FLASH_DELAY) {
set_color(flash_color, false);
flash_timer_one = timer_read();
if (num_extra_flashes_off > 0) {
flash_state = flash_off;
num_extra_flashes_off--;
} else {
set_color(underglow, false);
flash_state = no_flash;
ran_once = false;
}
}
return;
}
}
void set_os (uint8_t os, bool update) {
current_os = os;
if (update) {
eeprom_update_byte(EECONFIG_USERSPACE, current_os);
}
switch (os) {
case OS_MAC:
set_unicode_input_mode(UC_OSX);
underglow = (Color){ 300, 255, 255 };
mod_primary_mask = MOD_GUI_MASK;
break;
case OS_WIN:
set_unicode_input_mode(UC_WINC);
underglow = (Color){ 180, 255, 255 };
mod_primary_mask = MOD_CTL_MASK;
break;
case OS_NIX:
set_unicode_input_mode(UC_LNX);
underglow = (Color){ 60, 255, 255 };
mod_primary_mask = MOD_CTL_MASK;
break;
default:
underglow = (Color){ 0, 0, 255 };
mod_primary_mask = MOD_CTL_MASK;
}
set_color(underglow, update);
flash_color = underglow;
flash_state = flash_off;
num_extra_flashes_off = 1;
}
void tap_key(uint8_t keycode) {
register_code(keycode);
unregister_code(keycode);
}
// register GUI if Mac or Ctrl if other
void pri_mod(bool press) {
if (press) {
if (current_os == OS_MAC) {
register_code(KC_LGUI);
} else {
register_code(KC_LCTL);
}
} else {
if (current_os == OS_MAC) {
unregister_code(KC_LGUI);
} else {
unregister_code(KC_LCTL);
}
}
}
// register Ctrl if Mac or GUI if other
void sec_mod(bool press) {
if (press) {
if (current_os == OS_MAC) {
register_code(KC_LCTL);
} else {
register_code(KC_LGUI);
}
} else {
if (current_os == OS_MAC) {
unregister_code(KC_LCTL);
} else {
unregister_code(KC_LGUI);
}
}
}
void surround_type(uint8_t num_of_chars, uint16_t keycode, bool use_shift) {
if (use_shift) {
register_code(KC_LSFT);
}
for (int i = 0; i < num_of_chars; i++) {
tap_key(keycode);
}
if (use_shift) {
unregister_code(KC_LSFT);
}
for (int i = 0; i < (num_of_chars/2); i++) {
tap_key(KC_LEFT);
}
}
void long_keystroke(size_t num_of_keys, uint16_t keys[]) {
for (int i = 0; i < num_of_keys-1; i++) {
register_code(keys[i]);
}
tap_key(keys[num_of_keys-1]);
for (int i = 0; i < num_of_keys-1; i++) {
unregister_code(keys[i]);
}
}
void dance_grv (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
tap_key(KC_GRV);
} else if (state->count == 2) {
surround_type(2, KC_GRAVE, false);
} else {
surround_type(6, KC_GRAVE, false);
}
}
void dance_quot (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
tap_key(KC_QUOT);
} else if (state->count == 2) {
surround_type(2, KC_QUOTE, false);
} else if (state->count == 3) {
surround_type(2, KC_QUOTE, true);
}
}
void dance_strk (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
surround_type(4, KC_TILDE, true);
} else if (state->count == 2) {
if (current_os == OS_MAC) {
long_keystroke(3, (uint16_t[]){KC_LGUI, KC_LSFT, KC_4});
} else if (current_os == OS_WIN) {
long_keystroke(3, (uint16_t[]){KC_LGUI, KC_LSFT, KC_S});
} else {
return;
}
}
}
void dance_3 (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
tap_key(KC_3);
} else if (state->count == 2) {
send_unicode_hex_string("00E8");
} else if (state->count == 3) {
send_unicode_hex_string("00E9");
}
}
void dance_c (qk_tap_dance_state_t *state, void *user_data) {
if (state->count == 1) {
tap_key(KC_C);
} else if (state->count == 2) {
send_unicode_hex_string("00E7");
}
}
void matrix_init_user(void) {
current_os = eeprom_read_byte(EECONFIG_USERSPACE);
set_os(current_os, false);
}
void matrix_scan_user(void) {
check_state();
flash_rgb();
fade_rgb();
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case M_PMOD:
if (record->event.pressed) {
pri_mod(true);
} else {
pri_mod(false);
}
return false;
case M_SMOD:
if (record->event.pressed) {
sec_mod(true);
} else {
sec_mod(false);
}
return false;
case M_P_B:
if (record->event.pressed) {
if (current_os == OS_WIN) {
SEND_STRING(SS_DOWN(X_LGUI) SS_TAP(X_PAUSE) SS_UP(X_LGUI));
} else {
}
}
return false;
case M_C_A_D:
if (record->event.pressed) {
if (current_os == OS_WIN) {
SEND_STRING(SS_DOWN(X_LCTRL) SS_DOWN(X_LALT) SS_TAP(X_DELETE) SS_UP(X_LALT) SS_UP(X_LCTRL));
} else {
}
}
return false;
case M_CALC:
if (record->event.pressed) {
if (current_os == OS_WIN) {
SEND_STRING(SS_TAP(X_CALCULATOR));
} else if (current_os == OS_MAC) {
SEND_STRING(SS_DOWN(X_LGUI) SS_TAP(X_SPACE) SS_UP(X_LGUI) "calculator" SS_TAP(X_ENTER));
}
}
return false;
case M_OS:
if (record->event.pressed) {
set_os((current_os+1) % _OS_COUNT, true);
}
return false;
case M_LOD:
if (record->event.pressed) {
send_unicode_hex_string("0CA0 005F 005F 0CA0");
}
return false;
case M_LENNY:
if (record->event.pressed) {
send_unicode_hex_string("0028 0020 0361 00B0 0020 035C 0296 0020 0361 00B0 0029");
}
return false;
case M_TF:
if (record->event.pressed) {
send_unicode_hex_string("0028 256F 2035 0414 2032 0029 256F 5F61 253B 2501 253B");
}
return false;
case M_UF:
if (record->event.pressed) {
send_unicode_hex_string("252C 2500 252C 30CE 0028 0020 00BA 0020 005F 0020 00BA 0020 30CE 0029");
}
return false;
case M_SHRUG:
if (record->event.pressed) {
send_unicode_hex_string("00AF 005C 005F 0028 30C4 0029 005F 002F 00AF");
}
return false;
case M_TM:
if (record->event.pressed) {
send_unicode_hex_string("2122");
}
return false;
case M_REPO:
if (record->event.pressed) {
SEND_STRING("https://github.com/arkag/qmk_firmware/tree/master/keyboards/mechmini/v2/keymaps/arkag");
}
return false;
case M_GGT:
if (record->event.pressed) {
SEND_STRING("@GrahamGoldenTech.com");
}
return false;
case M_SNIPT:
if (record->event.pressed) {
surround_type(6, KC_GRAVE, false);
pri_mod(true);
tap_key(KC_V);
pri_mod(false);
tap_key(KC_RGHT);
tap_key(KC_RGHT);
tap_key(KC_RGHT);
tap_key(KC_ENTER);
}
return false;
case M_BOLD:
if (record->event.pressed) {
surround_type(4, KC_8, true);
}
return false;
case M_ITAL:
if (record->event.pressed) {
surround_type(2, KC_8, true);
}
return false;
case M_ULIN:
if (record->event.pressed) {
surround_type(4, KC_MINS, true);
}
return false;
case KC_LSFT:
if (record->event.pressed) {
set_color(mod_color(underglow, true, 50), false);
SEND_STRING(SS_DOWN(X_LSHIFT));
} else {
set_color(underglow, false);
SEND_STRING(SS_UP(X_LSHIFT));
}
return false;
case MEDIA:
case LAZY:
case KEEB:
case RAISE:
case LOWER:
return true;
default:
if (record->event.pressed) {
active_timer_one = timer_read();
state = active;
}
return true;
}
}
uint32_t layer_state_set_user(uint32_t state) {
switch (biton32(state)) {
case _LAZY:
save_color(underglow);
underglow = mod_color(underglow, true, 50);
break;
case _MEDIA:
save_color(underglow);
underglow = mod_color(underglow, true, 150);
break;
case _KEEB:
save_color(underglow);
underglow = mod_color(underglow, false, 150);
break;
case _LOWER:
save_color(underglow);
underglow = mod_color(underglow, false, 100);
break;
case _RAISE:
save_color(underglow);
underglow = mod_color(underglow, true, 100);
break;
default:
reset_color();
break;
}
set_color(underglow, false);
return state;
}
//Tap Dance Definitions
qk_tap_dance_action_t tap_dance_actions[] = {
[TD_3_GRV_ACT] = ACTION_TAP_DANCE_FN (dance_3),
[TD_C_CED] = ACTION_TAP_DANCE_FN (dance_c),
[TD_GRV_3GRV] = ACTION_TAP_DANCE_FN (dance_grv),
[TD_SING_DOUB] = ACTION_TAP_DANCE_FN (dance_quot),
[TD_STRK_SHOT] = ACTION_TAP_DANCE_FN (dance_strk),
[TD_HYPH_UNDR] = ACTION_TAP_DANCE_DOUBLE (KC_MINS, LSFT(KC_MINS)),
[TD_BRCK_PARN_O] = ACTION_TAP_DANCE_DOUBLE (KC_LBRC, LSFT(KC_9)),
[TD_BRCK_PARN_C] = ACTION_TAP_DANCE_DOUBLE (KC_RBRC, LSFT(KC_0)),
[TD_LALT_RALT] = ACTION_TAP_DANCE_DOUBLE (KC_LALT, KC_RALT),
};